A096163 Primes p of the form qrs + 1 where q, r and s are distinct primes.
31, 43, 67, 71, 79, 103, 131, 139, 191, 223, 239, 283, 311, 367, 419, 431, 439, 443, 499, 599, 607, 619, 643, 647, 659, 683, 743, 787, 823, 827, 907, 947, 971, 1031, 1039, 1087, 1091, 1103, 1163, 1223, 1259, 1399, 1427, 1447, 1499, 1511, 1543, 1559, 1571, 1579
Offset: 1
Keywords
Crossrefs
Cf. A078330 (primes p with mu(p-1) = -1).
Programs
-
Mathematica
With[{nn=50},Take[Union[Select[Times@@@Subsets[Prime[Range[2nn]],{3}]+1,PrimeQ]],nn]] (* Harvey P. Dale, Jun 06 2021 *)
-
PARI
/* Here are five equivalent PARI programs */ forprime(p=2,2400, if(moebius(p-1)==-1 && omega(p-1)==3, print1(p,","))) forprime(p=2,2400, if(moebius(p-1)==-1 && bigomega(p-1)==3, print1(p,","))) forprime(p=2,2400, if(bigomega(p-1)==3 && omega(p-1)==3, print1(p,","))) forprime(p=2,2400, if(omega(p-1)==3 && issquarefree(p-1), print1(p,","))) forprime(p=2,2400, if(bigomega(p-1)==3 && issquarefree(p-1), print1(p,",")))
Comments