cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096164 Triangle T(n,m) read by rows: matrix product A053121 * A038207.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 30, 44, 27, 8, 1, 74, 133, 104, 44, 10, 1, 185, 388, 369, 200, 65, 12, 1, 460, 1110, 1236, 814, 340, 90, 14, 1, 1150, 3120, 3980, 3072, 1560, 532, 119, 16, 1, 2868, 8666, 12432, 10984, 6542, 2715, 784, 152, 18, 1, 7170, 23816, 37938, 37688, 25695, 12516, 4403, 1104, 189, 20, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 19 2004

Keywords

Comments

Building the product with the two matrices swapped generates A039598 = A038207 * A053121.

Examples

			The triangle starts
   1;
   2,  1;
   5,  4,  1;
  12, 14,  6,  1;
  30, 44, 27,  8,  1;
		

Crossrefs

Programs

  • Maple
    A053121 := proc(n,k) if n< k or type(n-k,'odd') then 0; else (k+1)*binomial(n+1,(n-k)/2)/(n+1) ; end if; end proc:
    A038207 := proc(i,j) if j> i then 0; else binomial(i,j)*2^(i-j) ; end if; end proc:
    A096164 := proc(n,m) add( A053121(n,k)*A038207(k,m), k=0..n) ; end proc: seq(seq(A096164(n,m),m=0..n),n=0..15) ;
  • Mathematica
    a53121[n_, k_] /; n < k || OddQ[n - k] = 0;
    a53121[n_, k_] := (k + 1) Binomial[n + 1, (n - k)/2]/(n + 1);
    a38207[n_, k_] := Sum[Binomial[n, i] Binomial[i, k], {i, 0, n}];
    T[n_, k_] := Sum[a53121[n, j] a38207[j, k], {j, 0, n}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
  • Maxima
    T(n,k):=(2*k*sum(binomial(j,-n-3*k+2*j)*binomial(n+k,j),j,0,n+k))/(n+k); /* Vladimir Kruchinin, Oct 12 2011 */

Formula

Equals A053121 * A038207 = A053121 * (A007318)^2.
T(n,m) = Sum_{k=0..n} A053121(n,k)* A038207(k,m).
T(n,n-2) = A014106(n-1).
Conjecture: Sum_{m=0..n} T(n,m) = A126931(n). - R. J. Mathar, Mar 25 2010
T(n,k) = (2*k*sum(j=0..n+k, binomial(j,-n-3*k+2*j)*binomial(n+k,j)))/(n+k). - Vladimir Kruchinin, Oct 12 2011
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-2)^i. - Philippe Deléham, Feb 23 2012

Extensions

Edited, definition rewritten, program and more terms added by R. J. Mathar, Mar 25 2010