A096231 Number of n-th generation triangles in the tiling of the hyperbolic plane by triangles with angles {Pi/2, Pi/3, 0}.
1, 3, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081
Offset: 0
Examples
a(1)=3 because exactly three triangles have generation 1, i.e., are adjacent to the triangle with generation 0.
Links
- Robert Israel, Table of n, a(n) for n = 0..8110
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
Crossrefs
Programs
-
Magma
I:=[1,3,5,7,9,12,16]; [n le 7 select I[n] else Self(n-1)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
-
Maple
f:= gfun:-rectoproc({a(n) = a(n-2)+a(n-3), a(0)=1, a(1)=3, a(2)=5, a(3)=7, a(4)=9, a(5)=12}, a(n), remember): seq(f(n),n=0..50); # Robert Israel, Jan 13 2016
-
Mathematica
CoefficientList[ Series[(x + 1)^2*(1 + x + x^2)/(1 - x^2 - x^3), {x, 0, 45}], x] (* Robert G. Wilson v, Jul 31 2004 *) Join[{1, 3, 5}, LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50]] (* Vincenzo Librandi, Dec 30 2015 *)
-
PARI
a(n)=if(n>2,([0,1,0; 0,0,1; 1,1,0]^n*[1;3;5])[1,1],1) \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) = a(n-1) + a(n-5) = a(n-2) + a(n-3), for n > 6.
G.f.: (x+1)^2*(1+x+x^2) / (1-x^2-x^3).
Extensions
More terms from Robert G. Wilson v, Jul 31 2004
Comments