A096236 Number of n-digit base-3 deletable primes.
1, 2, 4, 7, 13, 24, 38, 72, 122, 226, 400, 684, 1246, 2381, 4384, 8330, 15839, 30617, 58764, 113987, 221994, 434498, 852036, 1673320, 3296641, 6509179
Offset: 1
Programs
-
Mathematica
b = 3; a = {1}; d = {2}; For[n = 2, n <= 10, n++, p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &]; ct = 0; For[i = 1, i <= Length[p], i++, c = IntegerDigits[p[[i]], b]; For[j = 1, j <= n, j++, t = Delete[c, j]; If[t[[1]] == 0, Continue[]]; If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++; Break[]]]]; AppendTo[a, ct]]; a (* Robert Price, Nov 12 2018 *)
-
Python
from sympy import isprime from sympy.ntheory.digits import digits def ok(n, prevset, base=3): if not isprime(n): return False s = "".join(str(d) for d in digits(n, base)[1:]) si = (s[:i]+s[i+1:] for i in range(len(s))) return any(t[0] != '0' and int(t, base) in prevset for t in si) def afind(terms): s, snxt, base = {2}, set(), 3 print(len(s), end=", ") for n in range(2, terms+1): for i in range(base**(n-1), base**n): if ok(i, s): snxt.add(i) s, snxt = snxt, set() print(len(s), end=", ") afind(13) # Michael S. Branicky, Jan 14 2022
Extensions
More terms from John W. Layman, Dec 14 2004
11 more terms from Ryan Propper, Jul 19 2005
Comments