cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096278 Sums of successive sums of successive sums of successive primes.

Original entry on oeis.org

33, 50, 72, 96, 120, 144, 172, 206, 240, 274, 308, 336, 364, 402, 444, 480, 514, 548, 578, 610, 648, 692, 742, 786, 816, 840, 864, 900, 960, 1024, 1070, 1108, 1152, 1196, 1236, 1278, 1320, 1362, 1404, 1444, 1488, 1530, 1560, 1592, 1650, 1728, 1790, 1824
Offset: 1

Views

Author

Cino Hilliard, Jun 22 2004

Keywords

Comments

If we consider the m-fold iterated "take sums of successive terms" operation acting on the primes, then for all m >= 1, the first term is always odd (and the only odd term); it is prime for m=1, 2, 4, 8, 21, 24, 27, 31, 40, 98,..., but not for m=3 (the present sequence). [Edited by M. F. Hasler, Jun 02 2017]

Examples

			The first two terms of SS order 1 is 13 and 20. 13+20 = 33 the first term of the sequence.
		

Crossrefs

Programs

  • Maple
    Ss:= L -> L[1..-2]+L[2..-1]:
    (Ss@@3)([seq(ithprime(i),i=1..100)]); # Robert Israel, Dec 28 2022
  • Mathematica
    Nest[ListConvolve[{1,1},#]&,Prime[Range[100]],3] (* Paolo Xausa, Oct 31 2023 *)
  • PARI
    f(n) = return(prime(n)+prime(n+1))
    f1(n) = return(f(n)+f(n+1))
    f2(n) = return(f1(n)+f1(n+1))
    g(n) = for(x=1,n,print1(f2(x)","))
    
  • PARI
    A096278(n,m=3)=for(k=0,m,prime(n+k)*binomial(m,k)) \\ or, to get a list:
    A096278_vec(Nmax,m=3,v=primes(Nmax+m))=sum(k=0,m,binomial(m,k)*v[1+k,k-1-m]) \\ Alternatively, do m times v=v[^1]+v[^-1]. - M. F. Hasler, Jun 02 2017

Formula

Let f(n) = prime(n) + prime(n+1) f1(n) = f(n)+f(n+1) : SS of order 1 Then f2(n) = f1(n)+f1(n) : SS of order 2 is the general term of this sequence.
a(n) = A096277(n) + A096277(n+1). - M. F. Hasler, Jun 02 2017
a(n) = prime(n)+3*prime(n+1)+3*prime(n+2)+prime(n+3). - Robert Israel, Dec 28 2022