A096278 Sums of successive sums of successive sums of successive primes.
33, 50, 72, 96, 120, 144, 172, 206, 240, 274, 308, 336, 364, 402, 444, 480, 514, 548, 578, 610, 648, 692, 742, 786, 816, 840, 864, 900, 960, 1024, 1070, 1108, 1152, 1196, 1236, 1278, 1320, 1362, 1404, 1444, 1488, 1530, 1560, 1592, 1650, 1728, 1790, 1824
Offset: 1
Examples
The first two terms of SS order 1 is 13 and 20. 13+20 = 33 the first term of the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Ss:= L -> L[1..-2]+L[2..-1]: (Ss@@3)([seq(ithprime(i),i=1..100)]); # Robert Israel, Dec 28 2022
-
Mathematica
Nest[ListConvolve[{1,1},#]&,Prime[Range[100]],3] (* Paolo Xausa, Oct 31 2023 *)
-
PARI
f(n) = return(prime(n)+prime(n+1)) f1(n) = return(f(n)+f(n+1)) f2(n) = return(f1(n)+f1(n+1)) g(n) = for(x=1,n,print1(f2(x)","))
-
PARI
A096278(n,m=3)=for(k=0,m,prime(n+k)*binomial(m,k)) \\ or, to get a list: A096278_vec(Nmax,m=3,v=primes(Nmax+m))=sum(k=0,m,binomial(m,k)*v[1+k,k-1-m]) \\ Alternatively, do m times v=v[^1]+v[^-1]. - M. F. Hasler, Jun 02 2017
Formula
Let f(n) = prime(n) + prime(n+1) f1(n) = f(n)+f(n+1) : SS of order 1 Then f2(n) = f1(n)+f1(n) : SS of order 2 is the general term of this sequence.
a(n) = prime(n)+3*prime(n+1)+3*prime(n+2)+prime(n+3). - Robert Israel, Dec 28 2022
Comments