A096351 Number of meaningfully different ways to design a neutral single-elimination tournament with n teams.
1, 1, 3, 3, 30, 90, 315, 315, 11340, 113400, 1247400, 3742200, 48648600, 170270100, 638512875, 638512875, 86837751000, 3126159036000, 118794043368000, 1187940433680000, 49893498214560000, 548828480360160000, 6311527524141840000
Offset: 1
Keywords
Examples
From _Laura Monroe_, Jun 11 2020: (Start) For n=3, the a(3)=3 computationally inequivalent pairwise summations on the 3 summands a,b,c are: ((a+b)+c), ((a+c)+b) and ((b+c)+a). For n=4, the a(4)=3 computationally inequivalent pairwise summations on 4 summands a,b,c,d are: ((a+b)+(c+d)), ((a+c)+(b+d)), and ((a+d)+(b+c)). (End)
References
- David, H. A. (1988). The Method of Paired Comparisons, 2nd Ed., New York: Oxford University Press. Page 123.
Links
- Michel Marcus, Table of n, a(n) for n = 1..400
- Laura Monroe and Vanessa Job, Computationally Inequivalent Summations and Their Parenthetic Forms, arXiv:2005.05387[cs.DM], 2020.
- T. V. Narayana, and F. Agyepong, Contributions to the Theory of Tournaments IV. A Comparison of Tournaments Through Probabilistic Completion, Cahiers BURO, Paris, 32 (1979), p. 21-34.
- D. T. Searls, On the Probability of Winning With Different Tournament Procedures, Journal of the American Statistical Association, Vol. 58 Issue 304, 1963; 1064-1081.
Programs
-
PARI
a(n) = if (n==1, 1, if (n%2, n!/((((n-1)/2)!*((n+1)/2)!))*a((n+1)/2)*a((n-1)/2), ((n!/((n/2)!*(n/2)!))*(a(n/2))^2)/2)); \\ Michel Marcus, Jun 15 2020
-
PARI
b(n) = if (n==0, 0, if (n%2, 2*b((n-1)/2)+1, b(n/2) + b(n/2-1))); \\ A268289 a(n) = n!/(2^b(n-1)); \\ Michel Marcus, Jun 16 2020
Formula
a(n) = 1 if n = 1. a(n) = ((n!/((n/2)!*(n/2)!))*(a(n/2))^2)/2 if n is even. a(n) = ((n!/((((n-1)/2)!*((n+1)/2)!)))*a((n+1)/2)*a((n-1)/2)) if n is odd and > 1.
If n = 2^k, then a(n) = n!/(2^(n-1)).
a(n) = n!/(2^A268289(n-1)). When the explicit form for A268289 is used, this is also an explicit form. - Laura Monroe, Jun 11 2020
Extensions
a(23) from Laura Monroe, Jun 14 2020
Comments