A096467 Numbers that can be the longest side of a primitive Heronian triangle.
5, 6, 8, 13, 15, 17, 20, 21, 24, 25, 26, 28, 29, 30, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 69, 70, 73, 74, 75, 77, 80, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 112, 113
Offset: 1
Keywords
Examples
5 is on this list because the triangle with sides 3, 4, 5 has integral area.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 240 terms from Vincenzo Librandi)
- Wm. Fitch Cheney, Jr., Heronian Triangles, Amer. Math. Monthly, Vol. 36, No. 1 (Jan 1929), 22-28.
- Eric Weisstein's World of Mathematics, Heronian Triangle
Crossrefs
Programs
-
Mathematica
nn=150; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s] && GCD[a, b, c]==1, area2=s(s-a)(s-b)(s-c); If[area2>0 && IntegerQ[Sqrt[area2]], AppendTo[lst, a]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments