cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096485 Period length of continued fraction for square root of n-th decimal repunit.

Original entry on oeis.org

2, 6, 2, 24, 2, 622, 2, 2396, 2, 21912, 2, 527718, 2, 168484, 2, 13171730, 2, 359947864, 2, 52090778, 2, 16658818532, 2, 134257065348, 2, 61403998114, 2
Offset: 2

Views

Author

Labos Elemer, Jun 24 2004

Keywords

Examples

			n=10: the period is [3,66666];
n=3: the period is [2, 2, 4, 5, 2, 7, 1, 41, 3, 1, 1, 4, 1, 1, 3, 41, 1, 7, 2, 5, 4, 2, 2, 210], 24 terms.
		

Crossrefs

Programs

  • Maple
    A096485 := proc(n) ((10^n-1)/9)^(1/2) ; nops(numtheory[cfrac](%,'periodic', 'quotients')[2]) ; end: for n from 2 to 10 do print(A096485(n)) ; od ; # R. J. Mathar, Apr 30 2007
    with(numtheory): [seq(nops(cfrac(((10^k-1/9)^(1/2), 'periodic', 'quotients')[2]), k=2..10)];
  • Mathematica
    Do[Print[Length[Last[ContinuedFraction[((-1+10^n)/9)^(1/2)]]]], {n, 2, 18}]
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction
    from sympy import sqrt
    def A096485(n): return len(continued_fraction(sqrt((10**n-1)//9))[-1]) # Chai Wah Wu, Mar 30 2021

Extensions

a(19)-a(26) from Hiroaki Yamanouchi, Oct 17 2015
a(27)-a(28) from Chai Wah Wu, Sep 14 2021