cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096488 Number of different terms in a period of continued fraction for square root of n-th repunit.

Original entry on oeis.org

2, 3, 2, 8, 2, 37, 2, 76, 2, 217, 2, 870, 2, 583, 2, 5034, 2, 28494, 2, 10058, 2, 187966, 2, 383291, 2, 340992, 2
Offset: 2

Views

Author

Labos Elemer, Jun 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Do[Print[Length[Union[Last[ContinuedFraction[((-1+10^n)/9)^(1/2)]]]]], {n, 2, 18}]
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction
    from sympy import sqrt
    def A096488(n): return len(set(continued_fraction(sqrt((10**n-1)//9))[-1])) # Chai Wah Wu, Mar 30 2021

Extensions

Name edited by Michel Marcus, Aug 22 2019
a(19)-a(22) from Daniel Suteu, Aug 22 2019
a(23)-a(28) from Chai Wah Wu, Apr 05 2021

A096486 Period length of continued fraction for square root of A095372(n)=1+90*(-1+100^n)/99.

Original entry on oeis.org

8, 170, 2242, 2132, 1294, 976846, 216566, 9904144, 25617930, 408928520, 25346031262, 137031675878, 89950978114
Offset: 1

Views

Author

Labos Elemer, Jun 25 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nops(cfrac((1+90*(-1+100^k)/99)^(1/2), 'periodic', 'quotients')[2]), k=2..10)];
  • Mathematica
    Do[Print[Length[Last[ContinuedFraction[(1+90*(-1+100^n)/99)^(1/2)]]]], {n, 1, 9}]

Extensions

a(10) from Vaclav Kotesovec, Aug 29 2019
a(11)-a(12) from Chai Wah Wu, Dec 07 2019
a(13) from Chai Wah Wu, Oct 01 2021
Showing 1-2 of 2 results.