cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096493 Number of distinct primes in continued fraction period of square root of n.

Original entry on oeis.org

0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 3, 0, 1, 1, 2, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jun 29 2004

Keywords

Examples

			n=127: the period={3,1,2,2,7,11,7,2,2,1,3,22},
distinct-primes={2,3,7,11}, so a[127]=4;
		

Crossrefs

Programs

  • Mathematica
    {te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[n^(1/2)]]]], True]; te[[u]]=s;u=u+1, {n, 1, m}];te
    dpcf[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Count[Union[ ContinuedFraction[ s][[2]]],?PrimeQ]]]; Array[dpcf,110] (* _Harvey P. Dale, Mar 18 2016 *)