A096496 Number of distinct primes in the periodic part of the continued fraction for sqrt(prime(n)).
1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 2, 0, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 0, 2, 1, 0, 1, 1, 2, 1, 4, 2, 1, 4, 2, 4, 3, 4, 1, 0, 4, 1, 3, 2, 0, 3, 4, 1, 0, 1, 1, 2, 2, 2, 0, 0, 1, 1, 3, 1, 1, 0, 4, 3, 3, 1, 5, 3, 2, 2, 2, 1, 3, 2, 4, 2, 1, 2, 0, 3, 4, 5, 5, 3, 1, 0, 3, 4, 1, 4, 1, 3, 3, 2, 1, 1, 2, 2, 2, 4, 4, 0, 2, 3, 4
Offset: 1
Keywords
Examples
n=31: prime(31) = 127, and the periodic part of the continued fraction of sqrt(127) is {3,1,2,2,7,11,7,2,2,1,3,22}, so a(31) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
{te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[f[n]^(1/2)]]]], True]; te[[u]]=s;u=u+1, {n, 1, m}];te Count[Union[ContinuedFraction[Sqrt[#]][[2]]],?PrimeQ]&/@Prime[ Range[ 110]] (* _Harvey P. Dale, Apr 27 2016 *)