A096542 Triangle, read by rows, where e.g.f. A(x,y) satisfies: A(x,y) = exp(x*y*A(x,y+1)) and A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)/n!*x^n*y^k.
1, 0, 1, 0, 2, 3, 0, 15, 30, 16, 0, 244, 564, 444, 125, 0, 6885, 17540, 16680, 7320, 1296, 0, 298326, 817470, 877740, 478380, 136590, 16807, 0, 18377191, 53352138, 62582100, 39142600, 14146440, 2873136, 262144, 0, 1525885992, 4645224472
Offset: 0
Examples
A(x,y) = exp(x*y*exp(x*(y+1)*exp(x*(y+2)*exp(...exp(x*(n+y)*exp(...))...)))). Triangle begins: 1; 0, 1; 0, 2, 3; 0, 15, 30, 16; 0, 244, 564, 444, 125; 0, 6885, 17540, 16680, 7320, 1296; 0, 298326, 817470, 877740, 478380, 136590, 16807; 0, 18377191, 53352138, 62582100, 39142600, 14146440, 2873136, 262144; 0, 1525885992, 4645224472, 5837707848, 4032207480, 1692155640, 441093240, 67558680, 4782969; ...
Links
- Paul D. Hanna, Rows n = 0..32, flattened.
Programs
-
PARI
{T(n,k)=local(A=exp(x));for(i=1,n,A=exp(x*(n-i+y)*A+x*O(x^n)+y*O(y^k))); n!*polcoeff(polcoeff(A,k,y),n,x)}
Comments