cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096585 Main diagonal of the square array A096583, in which the n-th diagonal equals the convolution of the n-th row with the antidiagonal sums (A096584).

Original entry on oeis.org

1, 3, 8, 20, 44, 96, 186, 372, 678, 1252, 2194, 3884, 6502, 11102, 18194, 29966, 47988, 77300, 121194, 191132, 294986, 456368, 694516, 1058334, 1588762, 2388128, 3545232, 5263138, 7733564, 11356850, 16526932, 24036988, 34684020, 49989938
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2004

Keywords

Comments

Forms the partial sums of A096584 (the antidiagonal sums of array A096583).

Crossrefs

Programs

  • PARI
    
    				

A096583 Symmetric square array T(n,k)=T(k,n), read by antidiagonals, such that the n-th diagonal equals the convolution of the n-th row with the antidiagonal sums, with T(0,n)=1, for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 8, 7, 1, 1, 9, 16, 16, 9, 1, 1, 11, 23, 20, 23, 11, 1, 1, 13, 35, 44, 44, 35, 13, 1, 1, 15, 46, 69, 44, 69, 46, 15, 1, 1, 17, 62, 99, 108, 108, 99, 62, 17, 1, 1, 19, 77, 147, 179, 96, 179, 147, 77, 19, 1, 1, 21, 97, 206, 272, 248, 248, 272, 206, 97, 21
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2004

Keywords

Comments

The main diagonal (A096585) equals the partial sums of the antidiagonal sums (A096584).

Examples

			Antidiagonal sums are A096584 =
[1,2,5,12,24,52,90,186,306,574,...];
convolution of antidiagonal sums and first row yields main diagonal:
A096585 = [1,3,8,20,44,96,186,372,678,...];
convolution of antidiagonal sums and second row yields secondary
diagonal:
[1,5,16,44,108,248,530,1088,2138,4068,...].
Rows begin:
[1,1,1,1,1,1,1,1,1,...],
[1,3,5,7,9,11,13,15,17,...],
[1,5,8,16,23,35,46,62,77,...],
[1,7,16,20,44,69,99,147,206,...],
[1,9,23,44,44,108,179,272,379,...],
[1,11,35,69,108,96,248,429,669,...],
[1,13,46,99,179,248,186,530,965,...],
[1,15,62,147,272,429,530,372,1088,...],
[1,17,77,206,379,669,965,1088,678,...],...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,if(n==0 || k==0,1,if(n>k, sum(j=0,k,T(n-k,j)*sum(i=0,k-j,T(k-j-i,i))), sum(j=0,n,T(k-n,j)*sum(i=0,n-j,T(n-j-i,i))););))
Showing 1-2 of 2 results.