cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096586 Number of one-element transitions among all integer partitions of the integers from m=0 to m=n in the unlabeled case.

Original entry on oeis.org

0, 2, 8, 20, 44, 86, 158, 274, 458, 738, 1160, 1778, 2674, 3948, 5744, 8236, 11670, 16344, 22664, 31126, 42390, 57260, 76790, 102260, 135320, 177976, 232778, 302814, 391972, 504948, 647592, 826956, 1051750, 1332438, 1681856, 2115376, 2651726
Offset: 0

Views

Author

Thomas Wieder, Jul 02 2004

Keywords

Comments

We set A096586(0) = 0.

Examples

			a(5) = 2*43 = 86 because:
11 -> 2, 111 -> 12, 12 -> 3, 1111 -> 112, 112 -> 13, 112 -> 22,
13 -> 22, 13 -> 4, 11111 -> 1112, 1112 -> 122, 1112 -> 113, 122 -> 23,
122 -> 113, 113 -> 23, 113 -> 14, 23 -> 14, 14 -> 5,
0 -> 1,
1 -> 11, 1 -> 2, 11 -> 111, 11 -> 12, 2 -> 12, 2 -> 3, 111 -> 1111,
111 -> 112, 12 -> 112, 12 -> 13, 12 -> 22, 3 -> 13, 3 -> 4,
1111 -> 11111, 1111 -> 1112, 112 -> 1112, 112 -> 113, 112 -> 122,
13 -> 113, 13 -> 14, 13 -> 23, 22 -> 23, 22 -> 122, 4 -> 14, 4 -> 5,
which gives 43 transitions and (counting upwards and downwards transitions) we have 2*43 = 86 = A096586(5).
		

Crossrefs

Programs

  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) a[0] = 0; a[n_] := Block[{p = Partitions[n + 1], l = PartitionsP[n + 1]}, Sum[ Length[ Union[ p[[k]] ]]^2 - Length[ Union[ p[[k]] ]], {k, l}]]; b = CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x]; f[n_] := Sum[a[k] + 2b[[k]], {k, n}] - 1; Table[ f[n], {n, 36}] (* Robert G. Wilson v, Jul 13 2004 *)

Formula

A096586(n) = Sum_k=0^n A093695(k) + 2 * Sum_l=0^(n-1) A000070(l).

Extensions

More terms from Robert G. Wilson v, Jul 13 2004