A096586 Number of one-element transitions among all integer partitions of the integers from m=0 to m=n in the unlabeled case.
0, 2, 8, 20, 44, 86, 158, 274, 458, 738, 1160, 1778, 2674, 3948, 5744, 8236, 11670, 16344, 22664, 31126, 42390, 57260, 76790, 102260, 135320, 177976, 232778, 302814, 391972, 504948, 647592, 826956, 1051750, 1332438, 1681856, 2115376, 2651726
Offset: 0
Keywords
Examples
a(5) = 2*43 = 86 because: 11 -> 2, 111 -> 12, 12 -> 3, 1111 -> 112, 112 -> 13, 112 -> 22, 13 -> 22, 13 -> 4, 11111 -> 1112, 1112 -> 122, 1112 -> 113, 122 -> 23, 122 -> 113, 113 -> 23, 113 -> 14, 23 -> 14, 14 -> 5, 0 -> 1, 1 -> 11, 1 -> 2, 11 -> 111, 11 -> 12, 2 -> 12, 2 -> 3, 111 -> 1111, 111 -> 112, 12 -> 112, 12 -> 13, 12 -> 22, 3 -> 13, 3 -> 4, 1111 -> 11111, 1111 -> 1112, 112 -> 1112, 112 -> 113, 112 -> 122, 13 -> 113, 13 -> 14, 13 -> 23, 22 -> 23, 22 -> 122, 4 -> 14, 4 -> 5, which gives 43 transitions and (counting upwards and downwards transitions) we have 2*43 = 86 = A096586(5).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) a[0] = 0; a[n_] := Block[{p = Partitions[n + 1], l = PartitionsP[n + 1]}, Sum[ Length[ Union[ p[[k]] ]]^2 - Length[ Union[ p[[k]] ]], {k, l}]]; b = CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x]; f[n_] := Sum[a[k] + 2b[[k]], {k, n}] - 1; Table[ f[n], {n, 36}] (* Robert G. Wilson v, Jul 13 2004 *)
Extensions
More terms from Robert G. Wilson v, Jul 13 2004
Comments