cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096623 Decimal expansion of Integral_{t>=2} 1/(t*log(t)(t^2-1)) dt.

Original entry on oeis.org

1, 4, 0, 0, 1, 0, 1, 0, 1, 1, 4, 3, 2, 8, 6, 9, 2, 6, 6, 8, 6, 9, 1, 7, 3, 0, 5, 2, 3, 4, 2, 9, 9, 7, 3, 3, 1, 7, 7, 5, 2, 7, 9, 2, 8, 1, 2, 7, 0, 6, 5, 8, 2, 8, 9, 4, 8, 9, 4, 6, 8, 7, 4, 3, 1, 1, 3, 0, 4, 9, 1, 4, 9, 9, 5, 1, 6, 1, 3, 6, 1, 0, 2, 7, 6, 0, 2, 6, 5, 3, 2, 0, 6, 4, 8, 6, 6, 6, 9, 6, 3, 4, 3, 4, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

Maximum value of the integral in the Riemann prime counting function.

Examples

			0.1400101011432869266869173052342997331775279281270658289489468743113049149...
		

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, 2003, pp. 328-329.
  • Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity, 1859.

Crossrefs

Programs

  • Maple
    evalf(Integrate(1/(x*log(x)*(x^2-1)), x = 2..infinity), 120); # Vaclav Kotesovec, Feb 13 2019
  • Mathematica
    RealDigits[ NIntegrate[1/(t Log[t](t^2 - 1)), {t, 2, Infinity}, MaxRecursion -> 8, AccuracyGoal -> 115, WorkingPrecision -> 128]][[1]] (* Robert G. Wilson v, Jul 05 2004 *)
  • PARI
    default(realprecision, 120); intnum(x=2, oo, 1/(x*log(x)*(x^2 - 1))) \\ Vaclav Kotesovec, Feb 13 2019