A096634 Let p = n-th prime == 5 (mod 8) (A007521); a(n) = smallest prime q such that p is not a square mod q.
3, 5, 3, 5, 3, 7, 3, 11, 3, 5, 3, 7, 3, 7, 3, 5, 3, 3, 7, 5, 3, 5, 13, 3, 3, 11, 3, 5, 3, 7, 3, 3, 13, 5, 5, 3, 3, 3, 7, 5, 5, 3, 5, 3, 7, 3, 7, 5, 3, 5, 3, 5, 3, 5, 3, 3, 3, 11, 11, 5, 3, 13, 5, 3, 17, 3, 7, 5, 3, 3, 7, 11, 7, 3, 3, 5, 3, 3, 3, 7, 5, 3, 3, 3, 11, 3, 13, 5, 3, 3, 7, 3, 3, 11, 5, 3, 3, 5, 3
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:= proc(n) local p; p:= 1; do p:= nextprime(p); if numtheory:-quadres(n,p) = -1 then return p fi od end proc: map(g, select(isprime, [seq(i,i=5..10000,8)])); # Robert Israel, Apr 17 2023
-
Mathematica
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 5 &]
Comments