A096636 Smallest prime p > prime(n+2) such that p is a quadratic residue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1), and p is a quadratic non-residue mod prime(n+2).
5, 7, 19, 79, 331, 751, 1171, 7459, 10651, 18379, 90931, 78439, 399499, 644869, 2631511, 1427911, 4355311, 5715319, 49196359, 43030381, 163384621, 249623581, 452980999, 1272463669, 505313251
Offset: 0
Keywords
Examples
Let f(p) = list of Legendre(p|q) for q = 3,5,7,11,13,... Then f(3), f(5), f(7), f(11), ... are: p=3: 0, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, ... p=5: -1, 0, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, ... p=7: 1, -1, 0, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, ... p=11: -1, 1, 1, 0, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, ... p=13: 1, -1, -1, -1, 0, 1, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, ... p=17: -1, -1, -1, -1, 1, 0, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, ... p=19: 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, ... p=5 is the first list that begins with -1, so a(0) = 5, p=7 is the first list that begins 1, -1, so a(1) = 7, p=19 is the first list that begins 1, 1, -1, so a(2) = 19.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; t = Table[0, {50}]; Do[p = Prime[n]; a = f[p]; If[ t[[ PrimePi[a]]] == 0, t[[ PrimePi[a]]] = p; Print[ PrimePi[a], " = ", p]], {n, 10^9}]
Extensions
Better definition from T. D. Noe, Mar 06 2013
Entry revised by N. J. A. Sloane, Mar 06 2013
Simpler definition from Jonathan Sondow, Mar 06 2013
Comments