A096641 Decimal expansion of number with continued fraction expansion 0, 2, 4, 8, 16, ... (0 and positive powers of 2).
4, 4, 5, 9, 3, 4, 6, 4, 0, 5, 1, 2, 2, 0, 2, 6, 6, 8, 1, 1, 9, 5, 5, 4, 3, 4, 0, 6, 8, 2, 6, 1, 7, 6, 8, 4, 2, 7, 0, 4, 0, 8, 8, 4, 5, 2, 0, 3, 4, 3, 8, 5, 0, 7, 9, 0, 3, 2, 6, 3, 5, 6, 0, 5, 0, 0, 6, 6, 1, 9, 0, 0, 6, 9, 1, 6, 2, 3, 2, 7, 7, 8, 9, 9, 7, 7, 7, 1, 6, 1, 8, 9, 0, 3, 9, 9, 2, 1, 4, 6, 2, 0, 4, 2, 4
Offset: 0
Examples
0.445934640512202668119554340682617684270408845203438507903263560500661900...
Links
- James Mc Laughlin and Nancy J. Wyshinski, Ramanujan and the regular continued fraction expansion of real numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 138. No. 3 (2005), pp. 367-381; arXiv preprint arXiv:math/0402461 [math.NT], 2004; alternative link. See page 2.
Programs
-
Mathematica
RealDigits[FromContinuedFraction[{0, 2^Range@ 19}], 10, 111][[1]] (* Robert G. Wilson v, Jan 04 2013 *)
-
PARI
\p 400 dec_exp(v)= w=contfracpnqn(v); w[1,1]/w[2,1]+0. dec_exp(vector(400,i,if(i==1,0,2^(i-1)))) /* The following uses Komatsu's expression for given a; a0=0, m=1 */ {Komatsu(a)=suminf(s=0,a^(-(s+1)^2)*prod(i=1,s,(a^(2*i)-1)^(-1))) /suminf(s=0,a^(-s^2)*prod(i=1,s,(a^(2*i)-1)^(-1)))} Komatsu(2) /* generates this sequence's constant */
Comments