A096683 Least k such that decimal representation of k*n contains only digits 0 and 4.
4, 2, 148, 1, 8, 74, 572, 5, 49382716, 4, 4, 37, 308, 286, 296, 25, 2612, 24691358, 2316, 2, 1924, 2, 19148, 185, 16, 154, 163127572, 143, 151876, 148, 14324, 125, 13468, 1306, 1144, 12345679, 12, 1158, 1036, 1, 1084, 962, 102428, 1, 98765432
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{id = {0, 4}, k = 1}, While[ Union[ Join[id, IntegerDigits[k*n]]] != id, k++]; k]; Array[f, 100] (* or *) id = {0, 7}; lst = Union[ FromDigits /@ Flatten[ Table[ Tuples[id, j], {j, 15}], 1]]; If[ lst[[1]] == 0, lst = Rest@ lst]; f[n_] := (Min[ Select[lst, Mod[#, n] == 0 &]]/n) /. Infinity -> 0; Array[f, 100] (* or *) id = {0, 7}; lst = Union[ FromDigits /@ Flatten[ Table[ Tuples[id, j], {j, 15}], 1]]; If[ lst[[1]] == 0, lst = Rest@ lst]; f[n_] := (SelectFirst[lst, Mod[#, n] == 0 &, 0]/n); a = Array[f, 100] (* requires Mathematica v10 *) (* Robert G. Wilson v, Sep 26 2016 *)
Formula
a(n) = A078243(n)/n.