cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096726 Expansion of eta(q^3)^10 / (eta(q) * eta(q^9))^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 12, 21, 18, 36, 24, 45, 12, 54, 36, 84, 42, 72, 72, 93, 54, 36, 60, 126, 96, 108, 72, 180, 93, 126, 12, 168, 90, 216, 96, 189, 144, 162, 144, 84, 114, 180, 168, 270, 126, 288, 132, 252, 72, 216, 144, 372, 171, 279, 216, 294, 162, 36, 216, 360, 240, 270, 180, 504
Offset: 0

Views

Author

Michael Somos, Jul 06 2004

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*x + 9*x^2 + 12*x^3 + 21*x^4 + 18*x^5 + 36*x^6 + 24*x^7 + 45*x^8 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 475, Entry 7(i).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 2), 61); A[1] + 3*A[2] + 9*A[3]; /* Michael Somos, Aug 25 2014 */
  • Mathematica
    CoefficientList[ Series[1 + Sum[k(3x^k/(1 - x^k) - 27x^(9k)/(1 - x^(9k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 3 Sum[ If[ Mod[ d, 9] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Aug 25 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^10 / (QPochhammer[ q] QPochhammer[ q^9])^3, {q, 0, n}]; (* Michael Somos, Aug 25 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * sigma(n) - if( n%9==0, 27 * sigma(n/9)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^10 / (eta(x + A) * eta(x^9 + A))^3, n))};
    
  • PARI
    {a(n) = polcoeff( sum(k=1, n, k*3* (x^k / (1 - x^k) - 9*x^(9*k) / (1 - x^(9*k))), 1 + x * O(x^n)), n)};
    

Formula

G.f.: Product_{k>0} (1 - x^(3*k))^10 / ((1 - x^k) * (1 - x^(9*k)))^3 = 1 + Sum_{k>0} k * (3*x^k / (1 - x^k) - 27 * x^(9*k) / (1 - x^(9*k))).
Euler transform of period 9 sequence [ 3, 3, -7, 3, 3, -7, 3, 3, -4, ...].
a(n) = 3 * b(n) where b(n) is multiplicative and b(3^e) = 1 + 3*(e>0), b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w + 4*u*w^2 + v^3 - 6*u*v*w.
Expansion of b(q^3)^3 / b(q) = c(q)^3 / (9*c(q^3)) = (a(q)^2 + 3*a(q^3)^2) / 4 = (a(q)^2 + a(q)*b(q) + b(q)^2) / 3 in powers of q where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 9 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 25 2014
a(3*n + 2) = A281722(3*n + 2) + 27 * A033686(n). a(n) == A281722(n) (mod 27). - Michael Somos, Sep 04 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/9 = 2.193245... . - Amiram Eldar, Dec 28 2023