A096771 Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.
1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
Offset: 1
Examples
T(5,3)=3, counting 32, 311 and 221. From _Gus Wiseman_, Apr 12 2019: (Start) Triangle begins: 1 0 2 0 1 2 0 1 2 2 0 0 3 2 2 0 0 3 4 2 2 0 0 2 5 4 2 2 0 0 1 7 6 4 2 2 0 0 1 6 9 6 4 2 2 0 0 0 7 11 10 6 4 2 2 0 0 0 5 14 13 10 6 4 2 2 0 0 0 5 15 19 14 10 6 4 2 2 0 0 0 3 17 22 21 14 10 6 4 2 2 0 0 0 2 17 29 27 22 14 10 6 4 2 2 0 0 0 1 17 33 36 29 22 14 10 6 4 2 2 0 0 0 1 15 39 45 41 30 22 14 10 6 4 2 2 0 0 0 0 14 41 57 52 43 30 22 14 10 6 4 2 2 0 0 0 0 11 47 67 69 57 44 30 22 14 10 6 4 2 2 0 0 0 0 9 46 81 85 76 59 44 30 22 14 10 6 4 2 2 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Findstat, FindStat - St000784: The maximum of the length and the largest part of the integer partition
Crossrefs
Programs
-
Mathematica
Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
-
PARI
row(n)={my(r=vector(n)); forpart(p=n, r[max(#p,p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024
Formula
Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024
Comments