A096778 Number of partitions of n with at most two even parts.
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 45, 58, 75, 95, 121, 151, 189, 234, 289, 354, 433, 526, 637, 768, 923, 1105, 1319, 1569, 1861, 2202, 2597, 3056, 3587, 4201, 4908, 5723, 6658, 7732, 8961, 10367, 11971, 13802, 15884, 18253, 20942, 23992, 27445, 31353
Offset: 0
Examples
a(3)=3 because we have [3],[2,1] and [1,1,1].
References
- Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=2. - N. J. A. Sloane, Aug 31 2014
Programs
-
Mathematica
CoefficientList[ Series[(1/((1 - x^2)*(1 - x^4)))/Product[1 - x^(2i + 1), {i, 0, 50}], {x, 0, 48}], x] (* Robert G. Wilson v, Aug 16 2004 *)
Formula
G.f.: (1/((1-x^2)*(1-x^4)))/Product(1-x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n with at most k even parts is (1/Product(1-x^(2*i), i=1..k))/Product(1-x^(2*i+1), i=0..infinity).
a(n) ~ 3^(3/4) * n^(1/4) * exp(Pi*sqrt(n/3)) / (8*Pi^2). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from Robert G. Wilson v, Aug 17 2004
More terms from Emeric Deutsch, Feb 21 2006
Comments