A096789 Decimal expansion of BesselI(1,2).
1, 5, 9, 0, 6, 3, 6, 8, 5, 4, 6, 3, 7, 3, 2, 9, 0, 6, 3, 3, 8, 2, 2, 5, 4, 4, 2, 4, 9, 9, 9, 6, 6, 6, 2, 4, 7, 9, 5, 4, 4, 7, 8, 1, 5, 9, 4, 9, 5, 5, 3, 6, 6, 4, 7, 1, 3, 2, 2, 8, 7, 9, 8, 4, 6, 0, 8, 5, 4, 5, 0, 3, 7, 5, 3, 5, 3, 6, 1, 1, 8, 5, 1, 1, 6, 1, 2, 2, 1, 4, 7, 5, 9, 4, 2, 2, 8, 9, 2, 5, 2, 3, 7, 7, 5
Offset: 1
Examples
1.59063685463732906338225...
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products (6th ed.), 2000, (eq. 0.246.2).
- Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
Programs
-
Maple
evalf(BesselI(1,2)). # R. J. Mathar, Oct 16 2015
-
Mathematica
RealDigits[BesselI[1, 2], 10, 110][[1]] (* Or *) RealDigits[ Sum[ n/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
-
PARI
besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014
Formula
Equals Sum_{k >= 0} k/k!^2.
Continued fraction expansion: 1/(1 - 1/(3 - 2/(7 - 6/(13 - 12/(21 - ... - n*(n-1)/(n^2+n+1 - ...)))))). For a sketch of the proof see A228229. Cf. A070910. - Peter Bala, Aug 19 2013
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-2) * Sum_{k>=1} A000108(k)/(k-1)!.
Equals exp(2) * Sum_{k>=1} (-1)^(k+1) * A000108(k)/(k-1)!. (End)