cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096825 Maximal size of an antichain in divisor lattice D(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com) and Vladeta Jovovic, Aug 17 2004

Keywords

Comments

The divisor lattice D(n) is the lattice of the divisors of the natural number n.
Also the number of divisors of n with half (rounded either way) as many prime factors (counting multiplicity) as n. - Gus Wiseman, Aug 24 2018

Examples

			There are two maximal size antichains of divisors of 180, namely {12, 18, 20, 30, 45} and {4, 6, 9, 10, 15}. Both have length 5 so a(180) = 5. - _Gus Wiseman_, Aug 24 2018
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local klist,x; klist:=ifactors(n)[2,1..-1,2]; coeff(normal(mul((1-x^(k+1))/(1-x),k=klist)),x,floor(add(k,k=klist)/2)) end: seq(a(n), n=1..100);
  • Mathematica
    a[n_] := Module[{pp, kk, x}, {pp, kk} = Transpose[FactorInteger[n]]; Coefficient[ Product[ Total[x^Range[0, k]], {k, kk}], x, Quotient[ Total[ kk], 2] ] ]; Array[a, 100] (* Jean-François Alcover, Nov 20 2017 *)
    Table[Length[Select[Divisors[n],PrimeOmega[#]==Round[PrimeOmega[n]/2]&]],{n,50}] (* Gus Wiseman, Aug 24 2018 *)
  • PARI
    a(n)=if(n<6||isprimepower(n), return(1)); my(d=divisors(n),r=1,u); d=d[2..#d-1];for(k=0,2^#d-1,if(hammingweight(k)<=r,next); u=vecextract(d,k); for(i=1,#u, for(j=i+1,#u, if(u[j]%u[i]==0, next(3))));r=#u);r \\ Charles R Greathouse IV, May 14 2013
    
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A096825(n):
        fs = factorint(n)
        return len(list(multiset_combinations(fs,sum(fs.values())//2))) # Chai Wah Wu, Aug 23 2021
  • Sage
    def A096825(n) :
        if n==1 : return 1
        R. = QQ[]; mults = [x[1] for x in factor(n)]
        return prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]
    # Eric M. Schmidt, May 11 2013
    

Formula

a(n) is the coefficient at x^k in (1+x+...+x^k_1)*...*(1+x+...+x^k_q) where n=p_1^k_1*...*p_q^k_q is the prime factorization of n and k=floor((k_1+...+k_q)/2). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004

Extensions

More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004