A096825 Maximal size of an antichain in divisor lattice D(n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3
Offset: 1
Keywords
Examples
There are two maximal size antichains of divisors of 180, namely {12, 18, 20, 30, 45} and {4, 6, 9, 10, 15}. Both have length 5 so a(180) = 5. - _Gus Wiseman_, Aug 24 2018
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
- S.-H. Cha, E. G. DuCasse and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT] (2014), (2.19).
Programs
-
Maple
a:=proc(n) local klist,x; klist:=ifactors(n)[2,1..-1,2]; coeff(normal(mul((1-x^(k+1))/(1-x),k=klist)),x,floor(add(k,k=klist)/2)) end: seq(a(n), n=1..100);
-
Mathematica
a[n_] := Module[{pp, kk, x}, {pp, kk} = Transpose[FactorInteger[n]]; Coefficient[ Product[ Total[x^Range[0, k]], {k, kk}], x, Quotient[ Total[ kk], 2] ] ]; Array[a, 100] (* Jean-François Alcover, Nov 20 2017 *) Table[Length[Select[Divisors[n],PrimeOmega[#]==Round[PrimeOmega[n]/2]&]],{n,50}] (* Gus Wiseman, Aug 24 2018 *)
-
PARI
a(n)=if(n<6||isprimepower(n), return(1)); my(d=divisors(n),r=1,u); d=d[2..#d-1];for(k=0,2^#d-1,if(hammingweight(k)<=r,next); u=vecextract(d,k); for(i=1,#u, for(j=i+1,#u, if(u[j]%u[i]==0, next(3))));r=#u);r \\ Charles R Greathouse IV, May 14 2013
-
Python
from sympy import factorint from sympy.utilities.iterables import multiset_combinations def A096825(n): fs = factorint(n) return len(list(multiset_combinations(fs,sum(fs.values())//2))) # Chai Wah Wu, Aug 23 2021
-
Sage
def A096825(n) : if n==1 : return 1 R.
= QQ[]; mults = [x[1] for x in factor(n)] return prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2] # Eric M. Schmidt, May 11 2013
Formula
a(n) is the coefficient at x^k in (1+x+...+x^k_1)*...*(1+x+...+x^k_q) where n=p_1^k_1*...*p_q^k_q is the prime factorization of n and k=floor((k_1+...+k_q)/2). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004
Extensions
More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004
Comments