cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096832 Number of primes in enlarged neighborhood with center = n-th primorial and radius = 2*ceiling(log(n-th primorial)). So compared to A096831, the radius is doubled.

Original entry on oeis.org

2, 4, 4, 2, 3, 4, 1, 2, 1, 1, 1, 1, 3, 3, 1, 4, 2, 1, 4, 1, 2, 4, 1, 7, 1, 4, 2, 3, 0, 2, 3, 3, 0, 1, 6, 2, 1, 2, 4, 2, 3, 2, 2, 0, 3, 0, 2, 5, 3, 3, 1, 5, 2, 6, 3, 4, 3, 2, 2, 4, 2, 4, 1, 4, 7, 5, 2, 7, 1, 3, 2, 2, 6, 6, 3, 1, 3, 5, 4, 1, 4, 5, 6, 2, 5, 2, 4, 2, 0, 6, 1, 3, 5, 2, 5, 4, 4, 4, 3, 4, 3, 1, 3, 2, 4
Offset: 1

Views

Author

Labos Elemer, Jul 14 2004

Keywords

Comments

What is exceptional in such neighborhoods of primorials is that in most cases no primes occur, i.e., these zones are peculiarly poor or empty of primes! If the radius is doubled then the density of primes appears to be "normal".

Examples

			n=7: 7th primorial = 510510; for radius=14, no primes in the relevant neighborhood; for radius=28, then one prime appears: 510529.
		

Crossrefs

A333058 0, 1, or 2 primes at primorial(n) +- 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Frank Ellermann, Mar 06 2020

Keywords

Comments

a(n) = 0 marks a prime gap size of at least 2*prime(n+1)-1, e.g., primorial(8) +- prime(9) = {9699667,9699713} are primes, gap 2*23-1.
Mathworld reports that it is not known if there are an infinite number of prime Euclid numbers.
The tables in Ondrejka's collection contain no further primorial twin primes after {2309,2311} = primorial(13) +- 1 up to primorial(15877) +- 1 with 6845 digits.

Examples

			a(2) = a(3) = a(5) = 2: 2*3 +-1 = {5,7}, 6*5 +-1 = {29,31} and 210*11 +-1 = {2309,2311} are twin primes.
a(1) = a(4) = a(6) = 1: 1, 30*7 - 1 = 209 and 2310*13 + 1 = 30031 are not primes.
a(7) = 0: 510509 = 61 * 8369 and 510511 = 19 * 26869 are not primes.
		

References

  • H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.

Crossrefs

Cf. A096831, A002110 (primorials, p#), A057706.
Cf. A006862 (Euclid, p#+1), A005234 (prime p#+1), A014545 (index prime p#+1).
Cf. A057588 (Kummer, p#-1), A006794 (prime p#-1), A057704 (index prime p#-1).
Cf. A010051, A088411 (where a(n) is positive), A088257.

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
    a:= n-> add(`if`(isprime(p(n)+i), 1, 0), i=[-1, 1]):
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 18 2020
  • Mathematica
    primorial[n_] := primorial[n] = Times @@ Prime[Range[n]];
    a[n_] := Boole@PrimeQ[primorial[n] - 1] + Boole@PrimeQ[primorial[n] + 1];
    a /@ Range[0, 105] (* Jean-François Alcover, Nov 30 2020 *)
  • Rexx
    S = ''                     ;  Q = 1
    do N = 1 to 27
       Q = Q * PRIME( N )
       T = ISPRIME( Q - 1 ) + ISPRIME( Q + 1 )
       S = S || ',' T
    end N
    S = substr( S, 3 )
    say S                      ;  return S

Formula

a(n) = [ isprime(primorial(n) - 1) ] + [ isprime(primorial(n) + 1) ].
a(n) = Sum_{i in {-1,1}} A010051(primorial(n) + i).
Showing 1-2 of 2 results.