A096859 Function A062401(x) = phi(sigma(x)) = f(x) is iterated. Starting with n, a(n) is the count of distinct terms arising in trajectory; a(n)=t(n)+c(n)=t+c, where t=number of transient terms, c=number of recurrent terms (in the terminal cycle).
1, 1, 2, 2, 2, 2, 3, 1, 2, 3, 3, 1, 3, 2, 2, 3, 3, 4, 2, 2, 4, 2, 2, 3, 4, 2, 4, 4, 2, 3, 4, 4, 4, 5, 4, 3, 5, 4, 4, 4, 2, 5, 3, 4, 4, 4, 4, 2, 4, 3, 4, 6, 5, 5, 4, 5, 5, 4, 4, 2, 4, 5, 3, 4, 4, 3, 5, 4, 5, 3, 4, 2, 4, 4, 3, 3, 5, 3, 5, 3, 4, 4, 4, 3, 4, 5, 5, 3, 4, 3, 3, 3, 5, 3, 5, 2, 6, 4, 3, 7, 5, 3, 3, 3, 5
Offset: 1
Keywords
Examples
n=255: list={255,144,360,288,[432,480],432,...}, t=transient=4, c=cycle=2, a(255)=t+c=6; n=244: list={244,180,144,360,288,[432,480],432,...}, t=5, c=2, a(244)=7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
fs[x_] :=EulerPhi[DivisorSigma[1, x]] itef[x_, len_] :=NestList[fs, x, len] Table[Length[Union[itef[2^w, 20]]], {w, 1, 256}] (* len=20 at n<=256 is suitable *)
-
Scheme
(define (A096859 n) (let loop ((visited (list n)) (i 1)) (let ((next (A062401 (car visited)))) (cond ((member next visited) i) (else (loop (cons next visited) (+ 1 i))))))) ;; Antti Karttunen, Nov 18 2017