cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096862 Function A062402(x)=sigma(phi(x)) is iterated. Starting with n, a(n) is the count of distinct terms arising during this trajectory; a(n)=t(n)+c(n)=t+c, where t is the number of transient terms, c is the number of recurrent terms [in the terminal cycle].

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 3, 3, 3, 4, 2, 2, 3, 1, 2, 4, 3, 5, 2, 2, 4, 3, 2, 3, 2, 5, 1, 5, 2, 3, 4, 3, 4, 4, 2, 4, 5, 4, 4, 5, 2, 6, 3, 4, 3, 4, 4, 6, 3, 5, 4, 7, 5, 5, 4, 4, 5, 5, 3, 3, 4, 4, 5, 3, 3, 4, 5, 5, 4, 4, 3, 3, 4, 5, 4, 3, 4, 3, 5, 6, 5, 5, 4, 5, 6, 6, 5, 4, 4, 3, 5, 3, 4, 3, 5, 3, 6, 3, 5, 8, 5, 4, 3, 3
Offset: 1

Views

Author

Labos Elemer, Jul 21 2004

Keywords

Examples

			n=256: list={256,255,255}, transient=t=1, cycle=c=1, a(256)=t+c=2.
		

Crossrefs

Programs

  • Mathematica
    gf[x_] :=DivisorSigma[1, EulerPhi[x]] gite[x_, hos_] :=NestList[gf, x, hos] Table[Length[Union[gite[w, 1000]]], {w, 1, 256}]