A097008 a(n) = index of first appearance of n in A096862.
1, 2, 5, 11, 19, 43, 53, 101, 1297, 883, 1009, 1037, 1051, 985, 2391, 12101, 13457, 21887, 42683, 69697, 50177, 115601, 113669, 88897, 156817, 184477, 247487, 245029, 187273, 287543, 211031, 287093, 1001447, 5398093, 9741229, 7757137
Offset: 1
Keywords
Examples
The trajectory of 19 under iteration of f(x) is 19, 39, 60, 31, 72, 60, 31, 72, ...; the cycle (60, 31, 72) is completed at the fifth term and for j < 19 the first cycle in trajectory of j under iteration of f(x) is completed at the first, second, third or fourth term, hence a(5) = 19. The trajectory of 247487 under iteration of f(x) is 247487, 787200, 507873, 1282842, 1395372, 1476096, 1572096, 1089403, 3669120, 2621120, 4464096, 3963960, 2946240, 2538280, 3265416, 2877420, 1965840, 2227680, 1310680, 1591200, 1277874, 1307124, 1110488, 2010960, 1488032, 1981496, 2239920, 1965840, ...; the cycle (1965840, 2227680, ..., 2239920) is completed at the 27th term and for j < 247487 the first cycle in trajectory of j under iteration of f(x) is completed at an earlier term, hence a(27) = 247487.
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..120
Programs
-
Mathematica
sf[x_] :=DivisorSigma[1, EulerPhi[x]]; nsf[x_, ho_] :=NestList[sf, x, ho]; luf[x_, ho_] :=Length[Union[nsf[x, ho]]]; t=Table[0, {35}];Do[s=luf[n, 100]; If[s<36&&t[[s]]==0, t[[s]]=n], {n, 1, 1500000}];t
-
PARI
{v=vector(40); for(n=1, 10000000, k=n; s=Set(k); until(setsearch(s, k=sigma(eulerphi(k))), s=setunion(s, Set(k))); a=#s; if(a<=m&&v[a]==0, v[a]=n)); v} /* Klaus Brockhaus, Jul 16 2007 */
Extensions
Edited, a(27) and a(33) corrected and a(34) through a(36) added by Klaus Brockhaus, Jul 16 2007
Comments