A096911 Number of partitions of n into distinct parts with exactly one even part.
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 18, 20, 23, 26, 30, 34, 38, 43, 49, 55, 61, 69, 77, 86, 95, 106, 118, 131, 144, 160, 177, 195, 214, 236, 260, 285, 312, 342, 375, 410, 447, 488, 534, 581, 632, 688, 749, 813, 882, 957, 1039, 1125, 1217, 1317, 1426
Offset: 1
Crossrefs
Cf. A000700.
Programs
-
Mathematica
Drop[ CoefficientList[ Series[x^2/(1 - x^2) * Product[1 + x^(2*i + 1), {i, 0, 70}], {x, 0, 62}], x], 1] (* Robert G. Wilson v, Aug 21 2004 *)
Formula
G.f.: x^2/(1-x^2)*Product(1+x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n into distinct parts with exactly k even parts is x^(k*(k+1))/Product(1-x^(2*i), i=1..k)*Product(1+x^(2*i+1), i=0..infinity).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/6)) / (2^(5/4) * Pi * n^(1/4)). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from Robert G. Wilson v, Aug 21 2004