cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096914 Number of partitions of 2*n into distinct parts with exactly two odd parts.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 25, 36, 50, 69, 93, 124, 163, 212, 273, 349, 442, 556, 695, 863, 1066, 1310, 1602, 1950, 2364, 2854, 3433, 4115, 4916, 5854, 6951, 8229, 9716, 11442, 13441, 15752, 18419, 21490, 25021, 29074, 33718, 39031, 45101, 52024, 59910
Offset: 2

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[ Union[ CoefficientList[ Series[x^4* Product[1 + x^(2m), {m, 1, 50}] / Product[1 - x^(2m), {m, 1, 2}], {x, 0, 920}], x]], 1] (* Robert G. Wilson v, Aug 21 2004 *)
    nmax = 50; Drop[CoefficientList[Series[(x^2/(1 - x - x^2 + x^3)) * Product[1 + x^m, {m, 1, nmax}], {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, May 29 2018 *)

Formula

G.f. for number of partitions of n into distinct parts with exactly k odd parts is x^(k^2)*Product(1+x^(2*m), m=1..infinity)/Product(1-x^(2*m), m=1..k).
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/3)) * n^(1/4) / (2*Pi^2). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Robert G. Wilson v, Aug 21 2004