A096956 Pascal (1,6) triangle.
6, 1, 6, 1, 7, 6, 1, 8, 13, 6, 1, 9, 21, 19, 6, 1, 10, 30, 40, 25, 6, 1, 11, 40, 70, 65, 31, 6, 1, 12, 51, 110, 135, 96, 37, 6, 1, 13, 63, 161, 245, 231, 133, 43, 6, 1, 14, 76, 224, 406, 476, 364, 176, 49, 6, 1, 15, 90, 300, 630, 882, 840, 540, 225, 55, 6, 1, 16, 105, 390, 930
Offset: 0
Examples
Triangle begins: [0] 6; [1] 1, 6; [2] 1, 7, 6; [3] 1, 8, 13, 6; [4] 1, 9, 21, 19, 6; [5] 1, 10, 30, 40, 25, 6; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Maple
a(n,k):=piecewise(n=0,6,0
Mircea Merca, Apr 08 2012 -
Mathematica
A096956[n_, k_] := If[n == k, 6, (5*k/n + 1)*Binomial[n, k]]; Table[A096956[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
Formula
Recursion: a(n,m)=0 if m > n, a(0,0) = 6; a(n,0) = 1 if n >= 1; a(n,m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (6-5*x)/(1-x)^(m+1), m >= 0.
a(n,k) = (1+5*k/n)*binomial(n,k), for n > 0. - Mircea Merca, Apr 08 2012
Comments