cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096959 Sixth column (m=5) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 31, 96, 231, 476, 882, 1512, 2442, 3762, 5577, 8008, 11193, 15288, 20468, 26928, 34884, 44574, 56259, 70224, 86779, 106260, 129030, 155480, 186030, 221130, 261261, 306936, 358701, 417136, 482856, 556512, 638792, 730422, 832167, 944832
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. A096958 (fifth column), A097297 (seventh column).

Programs

  • Magma
    [(n+30)*Binomial(n+4, 4)/5: n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Table[(n + 30)*Binomial[n + 4, 4]/5, {n, 0, 50}] (* G. C. Greubel, Nov 24 2017 *)
  • PARI
    for(n=0,30, print1((n+30)*binomial(n+4, 4)/5, ", ")) \\ G. C. Greubel, Nov 24 2017
    

Formula

a(n) = A096956(n+5, 5).
a(n) = 6*b(n) - 5*b(n-1), with b(n) = A000389(n+5) = binomial(n+5, 5).
a(n) = (n+30)*binomial(n+4, 4)/5.
G.f.: (6-5*x)/(1-x)^6.
E.g.f.: x*(720 + 1140*x + 420*x^2 + 45*x^3 + x^4)*exp(x)/120. - G. C. Greubel, Nov 24 2017