cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096995 Number of transient terms if f(x) = sigma(phi(x)) = A062402 is iterated at initial value = 2^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 3, 1, 2, 3, 5, 2, 3, 6, 15, 1, 6, 8, 3, 15, 9, 4, 65, 44, 82, 83, 77, 75, 48, 26, 43, 1
Offset: 0

Views

Author

Labos Elemer, Jul 22 2004

Keywords

Comments

For transient lengths of iterations A062401(x) or A062402(x), if started at 2^n, holds that A096994(n)+1 = a(n). Corresponding cycle lengths satisfy A096852(n-1) = A096857(n). Behind these observation several relationships stand, e.g., sigma(A062401(x)) = A062402(sigma(x)) or phi(A062402(x)) = A062401(phi(x)).
For initial value = 2^33 more than 38000 iterations did not lead to a recurrent term, so possibly there is no cycle. a(34) through a(39) are 8, 52, 71, 24, 40, 12. - Klaus Brockhaus, Jul 19 2007

Examples

			Trajectory of 2^0 is 1,1, ...; there are zero transient terms preceding the 1-cycle (1), so a(0) = 0.
Trajectory of 2^14 is 16384, 16383, 34200, 30480, 26520, 16380, 10200, 6138, 6045, 9906, 9920, 12264, 10200, ...; there are six transient terms preceding the 6-cycle (10200, 6138, 6045, 9906, 9920, 12264), so a(14) = 6.
		

Crossrefs

Programs

Extensions

Edited and corrected by Klaus Brockhaus, Jul 19 2007