cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097038 A Jacobsthal variant.

Original entry on oeis.org

0, 1, 1, 5, 7, 21, 35, 85, 155, 341, 651, 1365, 2667, 5461, 10795, 21845, 43435, 87381, 174251, 349525, 698027, 1398101, 2794155, 5592405, 11180715, 22369621, 44731051, 89478485, 178940587, 357913941, 715795115, 1431655765, 2863245995
Offset: 0

Views

Author

Paul Barry, Jul 19 2004

Keywords

Comments

Convolution of A001045 and A077957.
Also interleaving of A002450(n+1) and A006095(n+1).

Crossrefs

Programs

  • PARI
    concat(0, Vec(x/((1-2*x^2)*(1-x-2*x^2)) + O(x^50))) \\ Michel Marcus, Nov 13 2015
    
  • PARI
    vector(50, n, n--; 2*2^n/3+(-1)^n/3-2^(n/2)*(1+(-1)^n)/2) \\ Altug Alkan, Nov 13 2015

Formula

G.f.: 1/(1-x-2*x^2) - 1/(1-2*x^2) = x/((1-2*x^2)*(1-x-2*x^2));
a(n) = 2*2^n/3+(-1)^n/3-2^(n/2)*(1+(-1)^n)/2;
a(n) = sum{k=0..floor((n+1)/2), binomial(n-k+1, k-1)2^k };
a(n) = sum{k=0..n, 2^(k/2)(1+(-1)^k)A001045(n-k)/2 };
a(n) = A001045(n+1)-A077957(n).