A097040 a(n) = 2*sum(C(n,2k+1)*F(2k), k=0..floor((n-1)/2)), where F(n) are Fibonacci numbers A000045.
0, 0, 2, 8, 26, 76, 212, 576, 1542, 4092, 10802, 28424, 74648, 195808, 513242, 1344672, 3521994, 9223284, 24151052, 63235040, 165562430, 433465780, 1134856802, 2971140048, 7778620656, 20364814656, 53315973362, 139583348216
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1).
Programs
-
Mathematica
f[n_] := f[n] = f[n - 1] + f[n - 2]; f[0] = 0; f[1] = 1; Table[2 Sum[Binomial[n, 2k + 1]f[2k], {k, 0, Floor[(n - 1)/2]}], {n, 1, 30}] Table[Fibonacci[2n-1]-Fibonacci[n+1],{n,30}] (* Harvey P. Dale, Oct 05 2011 *) LinearRecurrence[{4, -3, -2, 1}, {0, 0, 2, 8}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
Formula
a(n) = F(2n-1)-F(n+1) = 2*A056014(n).
G.f. -2*x^3 / ( (x^2-3*x+1)*(x^2+x-1) ). - R. J. Mathar, Jan 08 2013
Comments