cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097040 a(n) = 2*sum(C(n,2k+1)*F(2k), k=0..floor((n-1)/2)), where F(n) are Fibonacci numbers A000045.

Original entry on oeis.org

0, 0, 2, 8, 26, 76, 212, 576, 1542, 4092, 10802, 28424, 74648, 195808, 513242, 1344672, 3521994, 9223284, 24151052, 63235040, 165562430, 433465780, 1134856802, 2971140048, 7778620656, 20364814656, 53315973362, 139583348216
Offset: 1

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004

Keywords

Comments

Create a triangle with first column T(n,1)=A000045(n) for n=0,1,2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). The sum of all terms for the first n+1 rows of this triangle=a(n+2). The sum of the terms in row(n+1)= 0, 2, 6, 18, 50, 136, 364...with partial sums of these sums duplicating this sequence 0, 2, 8, 26, 76, 212, 576... - J. M. Bergot, Dec 19 2012

Programs

  • Mathematica
    f[n_] := f[n] = f[n - 1] + f[n - 2]; f[0] = 0; f[1] = 1; Table[2 Sum[Binomial[n, 2k + 1]f[2k], {k, 0, Floor[(n - 1)/2]}], {n, 1, 30}]
    Table[Fibonacci[2n-1]-Fibonacci[n+1],{n,30}] (* Harvey P. Dale, Oct 05 2011 *)
    LinearRecurrence[{4, -3, -2, 1}, {0, 0, 2, 8}, 29] (* Robert G. Wilson v, Dec 26 2012 *)

Formula

a(n) = F(2n-1)-F(n+1) = 2*A056014(n).
G.f. -2*x^3 / ( (x^2-3*x+1)*(x^2+x-1) ). - R. J. Mathar, Jan 08 2013