A097042 G.f. = (1 + 4 * g.f. for A096661)/(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)).
1, 2, 0, 4, 2, 4, 4, 8, 8, 10, 12, 16, 20, 24, 28, 36, 42, 48, 60, 72, 84, 100, 116, 136, 160, 186, 216, 252, 292, 336, 388, 448, 512, 588, 672, 768, 878, 1000, 1136, 1292, 1464, 1656, 1876, 2120, 2388, 2696, 3032, 3408, 3832, 4298, 4816, 5396, 6036, 6744, 7532, 8404
Offset: 0
Keywords
References
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017.
Programs
-
Mathematica
nmax = 60; Flatten[{1, Rest[CoefficientList[Series[2*Sum[x^(2*k - 1) QPochhammer[-x^(2*k), x], {k, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Mar 28 2017 *)
Formula
a(n) ~ 1/(3^(5/4)*n^(3/4))*exp(Pi*sqrt(n/3)) [Jang 2017]. - Peter Bala, Mar 29 2017
Conjectural g.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ). - Peter Bala, Feb 19 2021
Extensions
Name corrected by Peter Bala, Feb 19 2021
Comments