cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097060 Revrepfigits (reverse replicating Fibonacci-like digits): Numbers k whose reversal occurs in a sequence generated by starting with the k digits of a number and then continuing the sequence with a number that is the sum of the previous k terms.

Original entry on oeis.org

12, 24, 36, 48, 52, 71, 341, 682, 1285, 5532, 8166, 17593, 28421, 74733, 90711, 759664, 901921, 1593583, 4808691, 6615651, 6738984, 8366363, 8422611, 26435142, 54734431, 57133931, 79112422, 89681171, 351247542, 428899438, 489044741, 578989902
Offset: 1

Views

Author

Jason Earls, Sep 15 2004

Keywords

Comments

Numbers ending in zero are not permitted since the zeros are dropped upon reversal. However, terms with internal zeros such as 90711 are permitted. Conjectures: 1. Sequence is infinite. 2. Revrepfigits are more rare than repfigits.
There are no 12-digit revrepfigits.

Examples

			8166 is in the sequence since the sequence 8,1,6,6,21,34,67,128,250, 479,924,1781,3434,6618,..., contains the reversal of 8166.
		

References

  • J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 11-13. ASIN: B002ACVZ6O [From Jason Earls, Nov 21 2009]

Crossrefs

Cf. A007629.
Cf. A128546 (reverse of these numbers).

Programs

  • Mathematica
    rKeithQ[n_Integer] := Module[{b = IntegerDigits[n], r, s, k = 0}, If[Mod[n, 10] == 0, False, r = FromDigits[Reverse[b]]; s = Total[b]; While[s < r, AppendTo[b, s]; k++; s = 2*s - b[[k]]]; s == r]]; Select[Range[10, 100000], rKeithQ] (* T. D. Noe, Mar 15 2011 *)

Extensions

More terms from Bernardo Boncompagni and Anton Vrba (antonvrba(AT)yahoo.com), Jan 05 2007