A097091 Number of partitions of n such that the least part occurs exactly three times.
0, 0, 1, 0, 1, 2, 2, 2, 6, 5, 8, 11, 15, 18, 27, 30, 43, 54, 69, 83, 113, 134, 172, 211, 265, 320, 405, 483, 602, 726, 888, 1064, 1306, 1554, 1884, 2248, 2707, 3213, 3860, 4560, 5446, 6435, 7638, 8990, 10651, 12494, 14734, 17260, 20277, 23683, 27754, 32328
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[p[[k]], 4]; If[q[[1]] != q[[4]] && q[[2]] == q[[4]], c++]; k++]; c]; Table[ a[n], {n, 52}] Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Length[p] + 2*Min[p]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *) nmax = 60; Rest[CoefficientList[Series[Sum[x^(3*m)/Product[1-x^k,{k,m+1,nmax}], {m, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 04 2025 *) Table[-PartitionsP[n] + 3 PartitionsP[3 + n] - PartitionsP[4 + n] - 2 PartitionsP[5 + n] + PartitionsP[6 + n], {n, 1, 60}] (* Vaclav Kotesovec, Jul 05 2025 *)
Formula
G.f.: Sum_{m>0} (x^(3*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m) / Product_{i>m} (1-x^i)). Vladeta Jovovic
From Vaclav Kotesovec, Jul 05 2025: (Start)
a(n) = -p(n) + 3*p(n+3) - p(n+4) - 2*p(n+5) + p(n+6), where p(n) = A000041(n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3^(3/2)/(Pi*sqrt(2)) + 37*Pi/(24*sqrt(6)))/sqrt(n)). (End)
Comments