cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097092 Number of partitions of n such that the least part occurs exactly four times.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 2, 4, 5, 9, 9, 14, 16, 26, 29, 40, 48, 67, 79, 105, 126, 165, 196, 253, 303, 385, 459, 572, 687, 852, 1014, 1244, 1482, 1807, 2145, 2595, 3075, 3701, 4375, 5231, 6170, 7350, 8641, 10247, 12025, 14201, 16620, 19557, 22839, 26790, 31209
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2004

Keywords

Comments

Number of partitions p of n such that 3*min(p) + (number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 5]; If[ q[[1]] != q[[5]] && q[[2]] == q[[5]], c++ ]; k++ ]; c]; Table[ a[n], {n, 53}]
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Length[p] + 3*Min[p]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
    Table[Count[IntegerPartitions[n],?(Length[Split[#][[-1]]]==4&)],{n,60}] (* _Harvey P. Dale, Jan 18 2021 *)
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(4*m)/Product[1-x^k,{k,m+1,nmax}], {m, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 04 2025 *)
    Table[-PartitionsP[n] + 4 PartitionsP[4 + n] - PartitionsP[5 + n] - 2 PartitionsP[6 + n] - 2 PartitionsP[7 + n] + PartitionsP[8 + n] + 2 PartitionsP[9 + n] - PartitionsP[10 + n], {n, 1, 60}] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

G.f.: Sum_{m>0} (x^(4*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m) / Product_{i>m} (1-x^i)). Vladeta Jovovic
From Vaclav Kotesovec, Jul 05 2025: (Start)
a(n) = -p(n) + 4*p(n+4) - p(n+5) - 2*p(n+6) - 2*p(n+7) + p(n+8) + 2*p(n+9) - p(n+10), where p(n) = A000041(n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3^(3/2)/(Pi*sqrt(2)) + 61*Pi/(24*sqrt(6)))/sqrt(n)). (End)