A097093 Number of partitions of n such that the least part occurs exactly five times.
0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 4, 4, 8, 9, 14, 16, 23, 27, 39, 48, 62, 76, 100, 120, 159, 190, 241, 292, 367, 443, 552, 663, 816, 980, 1200, 1430, 1742, 2075, 2504, 2979, 3575, 4232, 5063, 5980, 7114, 8382, 9930, 11663, 13773, 16140, 18980, 22190, 26017
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 6]; If[ q[[1]] != q[[6]] && q[[2]] == q[[6]], c++ ]; k++ ]; c]; Table[ f[n], {n, 54}] Table[Count[IntegerPartitions[n],?(Length[Split[#][[-1]]]==5&)],{n,60}] (* _Harvey P. Dale, Feb 07 2022 *) nmax = 60; Rest[CoefficientList[Series[Sum[x^(5*m)/Product[1-x^k,{k,m+1,nmax}], {m, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 04 2025 *) Table[-PartitionsP[n] + 5 PartitionsP[5 + n] - PartitionsP[6 + n] - 2 PartitionsP[7 + n] - 2 PartitionsP[8 + n] - 3 PartitionsP[9 + n] + 3 PartitionsP[10 + n] + PartitionsP[11 + n] + 2 PartitionsP[12 + n] - PartitionsP[13 + n] - 2 PartitionsP[14 + n] + PartitionsP[15 + n], {n, 1, 60}] (* Vaclav Kotesovec, Jul 05 2025 *)
Formula
G.f.: Sum_{m>0} (x^(5*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m) / Product_{i>m} (1-x^i)). Vladeta Jovovic
From Vaclav Kotesovec, Jul 05 2025: (Start)
a(n) = -p(n) + 5*p(n+5) - p(n+6) - 2*p(n+7) - 2*p(n+8) - 3*p(n+9) + 3*p(n+10) + p(n+11) + 2*p(n+12) - p(n+13) - 2*p(n+14) + p(n+15), where p(n) = A000041(n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3^(3/2)/(Pi*sqrt(2)) + 85*Pi/(24*sqrt(6)))/sqrt(n)). (End)
Comments