A097130 Carmichael numbers that are not == 1 mod 24.
561, 2465, 2821, 8911, 29341, 62745, 63973, 101101, 162401, 188461, 314821, 512461, 656601, 1024651, 1033669, 1152271, 1193221, 1909001, 2100901, 2508013, 2531845, 3146221, 5031181, 5444489, 5481451, 6733693, 6868261, 8719309, 8927101, 9494101
Offset: 1
Keywords
Examples
561 is 9 modulo 24, 1105 is 1 modulo 24, 1729 is 1 modulo 24, etc.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..236823
- Gorgui-Naguib and Dlay, Properties of the Euler totient function modulo 24 and some of its cryptographic implications, Cryptology Research Group, University of Newcastle-upon-Tyne, UK.
- Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2002), pp. 883-90.
- F. Richman, Primality testing with Fermat's little theorem
Programs
-
Mathematica
CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; Select[ Range@ 10000000, Mod[#, 24] > 1 && CarmichaelNbrQ@# &] (* Robert G. Wilson v, Aug 23 2012 *)
Extensions
Recomputed and edited by N. J. A. Sloane, Aug 02 2010