cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097132 a(n) = Sum_{k=0..n} Fibonacci(k) + (-1)^k*Fibonacci(k-1).

Original entry on oeis.org

1, 2, 4, 5, 10, 12, 25, 30, 64, 77, 166, 200, 433, 522, 1132, 1365, 2962, 3572, 7753, 9350, 20296, 24477, 53134, 64080, 139105, 167762, 364180, 439205, 953434, 1149852, 2496121, 3010350, 6534928, 7881197, 17108662, 20633240, 44791057
Offset: 0

Views

Author

Paul Barry, Jul 26 2004

Keywords

Comments

Partial sums of A097131.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-1,1},{1,2,4,5,10},40] (* Harvey P. Dale, Nov 12 2022 *)

Formula

G.f.: (1 + x - x^2 - 2*x^3)/((1 - 3*x^2 + x^4)*(1-x));
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - a(n-4) + a(n-5);
a(n) = 1 + (1/2 - sqrt(5)/2)^n*(1/2 - 3*sqrt(5)/10) - (sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 + 1/2) + (-sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 - 1/2) + (sqrt(5)/2 + 1/2)^n*(3*sqrt(5)/10 + 1/2);
a(2n) = 1 + 3*Fibonacci(2n) = A097136(n);
a(2n+1) = 1 + Fibonacci(2n) + Fibonacci(2n+2) = 1 + Lucas(2n).