cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097195 Expansion of s(12)^3*s(18)^2/(s(6)^2*s(36)), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815. Then replace q^6 with q.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 2, 3, 0, 2, 2, 2, 2, 0, 4, 2, 2, 2, 0, 1, 2, 4, 2, 0, 2, 2, 2, 3, 2, 2, 0, 2, 2, 0, 2, 4, 2, 2, 0, 2, 4, 0, 4, 0, 2, 2, 2, 1, 0, 4, 2, 2, 0, 2, 2, 2, 4, 2, 0, 3, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 4, 2, 4, 2, 0, 2, 0, 4, 0, 2, 1, 0, 2, 2, 4
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2004

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + ...
G.f. = q + 2*q^7 + 2*q^13 + 2*q^19 + q^25 + 2*q^31 + 2*q^37 + 2*q^43 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.38).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6n+1, KroneckerSymbol[-3, #]&]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Nov 23 2015, after Michael Somos *)
    QP = QPochhammer; s = QP[q^2]^3*(QP[q^3]^2/QP[q]^2/QP[q^6]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(6 n + 1))]; (* Michael Somos, Mar 05 2016 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv(6*n+1, d, kronecker(-3, d)))}; /* Michael Somos, Nov 03 2005 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 6*n+1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p>3, if( p%6==1, e+1, !(e%2)))))}; /* Michael Somos, Nov 03 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))}; /* Michael Somos, Nov 03 2005 */

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
From Michael Somos, Nov 03 2005: (Start)
G.f.: Sum_{k in Z} x^k / (1 - x^(6*k + 1)).
G.f.: Sum_{k>=0} a(k) * x^(6*k + 1) = Sum_{k>0} x^(2*k-1) * (1 - x^(4*k - 2)) * (1 - x^(8*k - 4)) * (1 - x^(20*k - 10)) / (1 - x^(36*k - 18)). (End)
From Michael Somos, Mar 05 2016: (Start)
Expansion of q^(-1/6) * eta(q^2)^3 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 2, -1, 0, -1, 2, -2, ...].
6 * a(n) = A004016(6*n + 1). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Nov 24 2023