A097195 Expansion of s(12)^3*s(18)^2/(s(6)^2*s(36)), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815. Then replace q^6 with q.
1, 2, 2, 2, 1, 2, 2, 2, 3, 0, 2, 2, 2, 2, 0, 4, 2, 2, 2, 0, 1, 2, 4, 2, 0, 2, 2, 2, 3, 2, 2, 0, 2, 2, 0, 2, 4, 2, 2, 0, 2, 4, 0, 4, 0, 2, 2, 2, 1, 0, 4, 2, 2, 0, 2, 2, 2, 4, 2, 0, 3, 2, 2, 2, 0, 0, 2, 4, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 4, 2, 4, 2, 0, 2, 0, 4, 0, 2, 1, 0, 2, 2, 4
Offset: 0
Examples
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + ... G.f. = q + 2*q^7 + 2*q^13 + 2*q^19 + q^25 + 2*q^31 + 2*q^37 + 2*q^43 + ...
References
- Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.38).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[n_] := DivisorSum[6n+1, KroneckerSymbol[-3, #]&]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Nov 23 2015, after Michael Somos *) QP = QPochhammer; s = QP[q^2]^3*(QP[q^3]^2/QP[q]^2/QP[q^6]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *) a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(6 n + 1))]; (* Michael Somos, Mar 05 2016 *)
-
PARI
{a(n) = if( n<0, 0, sumdiv(6*n+1, d, kronecker(-3, d)))}; /* Michael Somos, Nov 03 2005 */
-
PARI
{a(n) = my(A, p, e); if( n<0, 0, n = 6*n+1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p>3, if( p%6==1, e+1, !(e%2)))))}; /* Michael Somos, Nov 03 2005 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)), n))}; /* Michael Somos, Nov 03 2005 */
Formula
Fine gives an explicit formula for a(n) in terms of the divisors of n.
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
From Michael Somos, Nov 03 2005: (Start)
G.f.: Sum_{k in Z} x^k / (1 - x^(6*k + 1)).
G.f.: Sum_{k>=0} a(k) * x^(6*k + 1) = Sum_{k>0} x^(2*k-1) * (1 - x^(4*k - 2)) * (1 - x^(8*k - 4)) * (1 - x^(20*k - 10)) / (1 - x^(36*k - 18)). (End)
From Michael Somos, Mar 05 2016: (Start)
Expansion of q^(-1/6) * eta(q^2)^3 * eta(q^3)^2 / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 2, -1, 0, -1, 2, -2, ...].
6 * a(n) = A004016(6*n + 1). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Nov 24 2023