cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097196 Expansion of psi(x^3)^2 / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 4, 4, 6, 8, 9, 12, 16, 18, 22, 28, 33, 40, 50, 58, 70, 84, 98, 116, 138, 160, 188, 222, 256, 298, 348, 400, 463, 536, 614, 706, 812, 926, 1060, 1212, 1378, 1568, 1785, 2022, 2292, 2598, 2932, 3312, 3740, 4208, 4736, 5328, 5978, 6708, 7522, 8416, 9416
Offset: 0

Views

Author

N. J. A. Sloane, Sep 17 2004

Keywords

Comments

On page 63 of Watson 1936 is an equation with left side 2*rho(q) + omega(q) and the right side is 3 times the g.f. of this sequence. - Michael Somos, Jul 14 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + ...
G.f. = q^2 + q^8 + 2*q^11 + 2*q^14 + 2*q^17 + 4*q^20 + 4*q^23 + 6*q^26 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 50, Eq. (25.4).
  • George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)]^2 / (4 x^(3/4) QPochhammer[ x^2]), {x, 0, n}]; (* Michael Somos, Jul 14 2015 *)
    nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^4 * (1-x^(3*k))^2 / (1-x^(2*k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A)^2), n))}; /* Michael Somos, Jul 14 2015 */

Formula

Expansion of q^(-2/3) * eta(x^6)^4 / (eta(x^2) * eta(x^3)^2) in powers of q. - Michael Somos, Jul 14 2015
G.f.: Product_{n >= 1} (1+q^(3*n))^4*(1-q^(3*n))^2/(1-q^(2*n)).
3 * a(n) = A053253(n) + 2 * A053255(n). - Michael Somos, Jul 29 2015
a(n) ~ exp(Pi*sqrt(n/3)) / (12*sqrt(n)). - Vaclav Kotesovec, Oct 14 2015