A097196 Expansion of psi(x^3)^2 / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions.
1, 0, 1, 2, 2, 2, 4, 4, 6, 8, 9, 12, 16, 18, 22, 28, 33, 40, 50, 58, 70, 84, 98, 116, 138, 160, 188, 222, 256, 298, 348, 400, 463, 536, 614, 706, 812, 926, 1060, 1212, 1378, 1568, 1785, 2022, 2292, 2598, 2932, 3312, 3740, 4208, 4736, 5328, 5978, 6708, 7522, 8416, 9416
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + ... G.f. = q^2 + q^8 + 2*q^11 + 2*q^14 + 2*q^17 + 4*q^20 + 4*q^23 + 6*q^26 + ...
References
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 50, Eq. (25.4).
- George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)]^2 / (4 x^(3/4) QPochhammer[ x^2]), {x, 0, n}]; (* Michael Somos, Jul 14 2015 *) nmax=60; CoefficientList[Series[Product[(1+x^(3*k))^4 * (1-x^(3*k))^2 / (1-x^(2*k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A)^2), n))}; /* Michael Somos, Jul 14 2015 */
Formula
Expansion of q^(-2/3) * eta(x^6)^4 / (eta(x^2) * eta(x^3)^2) in powers of q. - Michael Somos, Jul 14 2015
G.f.: Product_{n >= 1} (1+q^(3*n))^4*(1-q^(3*n))^2/(1-q^(2*n)).
a(n) ~ exp(Pi*sqrt(n/3)) / (12*sqrt(n)). - Vaclav Kotesovec, Oct 14 2015
Comments