A097225 Numbers n that are the hypotenuse of exactly 10 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 10 ways.
1625, 2125, 3250, 3625, 4250, 4625, 4875, 5125, 6375, 6500, 6625, 7250, 7625, 8500, 9125, 9250, 9750, 10250, 10875, 10985, 11125, 11375, 12125, 12625, 12750, 13000, 13250, 13625, 13875, 14125, 14500, 14625, 14875, 15250, 15375, 17000, 17125
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Programs
-
Mathematica
r[n_] := Reduce[0 < x <= y && n^2 == x^2 + y^2, {x, y}, Integers]; Reap[For[n = 5, n <= 20000, n++, rn = r[n]; If[rn =!= False, If[Length[r[n]] == 10, Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2016 *)
Comments