cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097296 Numbers k such that A001055(k) divides k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 61, 62, 67, 68, 70, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 105, 106, 107, 109, 110, 113, 116, 118, 122, 124, 127, 130
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2009

Keywords

Crossrefs

Cf. A001055.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
             d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1))
          while irem(k, g(k$2))>0 do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 16 2014
  • Mathematica
    g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] // Most // Rest}]]; a[1] = 1; a[n_] := (For[k = 1 + If[n == 1, 0, a[n-1]], Mod[k, g[k, k]] > 0 , k++]; k); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 07 2014, after Alois P. Heinz *)

Formula

Luca et al. estimate the density of this sequence (see their Theorem 3).
The number of terms that do not exceed x is ~ x/(log(x))^(1+o(1)) (Luca et al., 2008). - Amiram Eldar, May 23 2024