A097348 Decimal expansion of arccsch(2)/log(10).
2, 0, 8, 9, 8, 7, 6, 4, 0, 2, 4, 9, 9, 7, 8, 7, 3, 3, 7, 6, 9, 2, 7, 2, 0, 8, 9, 2, 3, 7, 5, 5, 5, 4, 1, 6, 8, 2, 2, 4, 5, 9, 2, 3, 9, 9, 1, 8, 2, 1, 0, 9, 5, 3, 5, 3, 9, 2, 8, 7, 5, 6, 1, 3, 9, 7, 4, 1, 0, 4, 8, 5, 3, 4, 9, 6, 7, 4, 5, 9, 6, 3, 2, 7, 7, 6, 5, 8, 5, 5, 6, 2, 3, 5, 1, 0, 3, 5, 3, 5, 1, 4, 5, 0
Offset: 0
Examples
0.20898764024997873376... Fibonacci(10^9) has 208987640 decimal digits; Fibonacci(10^21) has 208987640249978733769 decimal digits; Fibonacci(10^27) has 208987640249978733769272089 decimal digits.
Links
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Eric Weisstein's World of Mathematics, Lucas Number
Programs
-
Maple
phi := (1+sqrt(5))/2 ; evalf( log(phi)/log(10)) ; # R. J. Mathar, Oct 17 2012
-
Mathematica
FibonacciDigits[n_] := Ceiling[(2*n*ArcCsch[2] - Log[5])/Log[100]] RealDigits[ArcCsch[2]/Log[10], 10, 105][[1]] (* Vaclav Kotesovec, Aug 09 2015 *)
-
PARI
solve(x=.1,1,sinh(x)-.5)/log(10) \\ Charles R Greathouse IV, Aug 04 2020
-
PARI
log((1+sqrt(5))/2)/log(10) \\ Charles R Greathouse IV, Aug 04 2020
Formula
Equals log_10(phi) where phi = (1+sqrt(5))/2. - Jaroslav Krizek, Dec 23 2013
Extensions
Offset corrected by Lee A. Newberg, Oct 13 2022
Comments