cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097378 a(n) = SquareFreeKernel(n)*CubeFreeKernel(n) + 1.

Original entry on oeis.org

2, 5, 10, 9, 26, 37, 50, 9, 28, 101, 122, 73, 170, 197, 226, 9, 290, 109, 362, 201, 442, 485, 530, 73, 126, 677, 28, 393, 842, 901, 962, 9, 1090, 1157, 1226, 217, 1370, 1445, 1522, 201, 1682, 1765, 1850, 969, 676, 2117, 2210, 73, 344, 501, 2602, 1353, 2810
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(1 + Min[e, 2]); a[1] = 2; a[n_] := 1 + Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); 1 + prod(i = 1, #f~, f[i, 1]^(1 + min(f[i, 2], 2)));} \\ Amiram Eldar, Feb 01 2024

Formula

a(n) = A007947(n)*A007948(n) + 1.
From Amiram Eldar, Feb 01 2024: (Start)
b(n) = a(n) - 1 is multiplicative with b(p^e) = p^(1 + min(e, 2)).
Dirichlet g.f.: zeta(s) * (1 + Product_{p prime} (1 + 1/p^(s-2) - 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.69256837284462414024... . (End)