cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A097919 a(1)=1; a(n+1) = Sum_{k=1 to n} a(k) a(ceiling(n/k)).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 92, 246, 646, 1705, 4475, 11755, 30790, 80738, 211424, 553780, 1449999, 3796903, 9940710, 26027151, 68140743, 178399767, 467059142, 1222789414, 3201309100, 8381170779, 21942203523, 57445520528, 150394362117, 393737778753, 1030818974142
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion of Benoit Cloitre, Sep 03 2004

Keywords

Crossrefs

Cf. A097417.

Programs

  • Maple
    f:=proc(n) option remember; local k; if n = 1 then RETURN(1); fi; add( f(k)*f(ceil((n-1)/k)), k=1..n-1 ); end;
  • Mathematica
    a[1] := 1; a[n_] := a[n] = Sum[a[k]*a[Ceiling[(n - 1)/k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 30}] (* G. C. Greubel, Dec 20 2017 *)

Formula

a(n) ~ c * ((3 + sqrt(5))/2)^n, where c = 0.113749340218250534902880196020226926353440247305682768150354123166912... - Vaclav Kotesovec, Feb 26 2020
Showing 1-1 of 1 results.