A097418 Triangle of coefficients of a certain sequence of polynomials f_n(x) arising in connection with deformations of coordinate rings of type D Kleinian singularities.
1, 2, 0, 3, 2, 0, 4, 8, 8, 0, 5, 20, 56, 56, 0, 6, 40, 216, 608, 608, 0, 7, 70, 616, 3352, 9440, 9440, 0, 8, 112, 1456, 12928, 70400, 198272, 198272, 0, 9, 168, 3024, 39696, 352768, 1921152, 5410688, 5410688, 0, 10, 240, 5712, 103872, 1364800, 12129664, 66057856, 186043904, 186043904, 0
Offset: 1
Examples
The array begins 1 2 0 3 2 0 4 8 8 0 corresponding to the polynomials f_1(x) = 1, f_2(x) = 2x, f_3(x) = 3x^2 + 2x, f_4(x) = 4x^3 + 8x^2 + 8x.
Links
- Paul Boddington, No-cycle algebras and representation theory, Ph.D. thesis, University of Warwick, 2004.
Programs
-
PARI
f(n, a, b) = if (a==b, 2*n*a^(n-1), 2*(a^n - b^n)/(a-b)); row(n) = if (n==1, return([1])); my(v = vector(n-1, k, f(n, -(k-1)*k, -k*(k+1)))); my(m = matrix(n-1, n-1, i, j, (-j*(j-1))^i + (-(j+1)*j)^i)); concat(Vecrev(v/m), 0); \\ Michel Marcus, Mar 19 2023
Extensions
Typo corrected and extended by Michel Marcus, Mar 19 2023
Comments